skip to main content


Search for: All records

Creators/Authors contains: "Barrett, Craig F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Eyre-Walker, Adam (Ed.)
    Abstract The invasive Japanese stiltgrass (Microstegium vimineum) affects a wide range of ecosystems and threatens biodiversity across the eastern USA. However, the mechanisms underlying rapid adaptation, plasticity, and epigenetics in the invasive range are largely unknown. We present a chromosome-level assembly for M. vimineum to investigate genome dynamics, evolution, adaptation, and the genomics of phenotypic plasticity. We generated a 1.12-Gb genome with scaffold N50 length of 53.44 Mb respectively, taking a de novo assembly approach that combined PacBio and Dovetail Genomics Omni-C sequencing. The assembly contains 23 pseudochromosomes, representing 99.96% of the genome. BUSCO assessment indicated that 80.3% of Poales gene groups are present in the assembly. The genome is predicted to contain 39,604 protein-coding genes, of which 26,288 are functionally annotated. Furthermore, 66.68% of the genome is repetitive, of which unclassified (35.63%) and long-terminal repeat (LTR) retrotransposons (26.90%) are predominant. Similar to other grasses, Gypsy (41.07%) and Copia (32%) are the most abundant LTR-retrotransposon families. The majority of LTR-retrotransposons are derived from a significant expansion in the past 1–2 Myr, suggesting the presence of relatively young LTR-retrotransposon lineages. We find corroborating evidence from Ks plots for a stiltgrass-specific duplication event, distinct from the more ancient grass-specific duplication event. The assembly and annotation of M. vimineum will serve as an essential genomic resource facilitating studies of the invasion process, the history and consequences of polyploidy in grasses, and provides a crucial tool for natural resource managers. 
    more » « less
  2. null (Ed.)
  3. Abstract

    The capability to generate densely sampled single nucleotide polymorphism (SNP) data is essential in diverse subdisciplines of biology, including crop breeding, pathology, forensics, forestry, ecology, evolution and conservation. However, the wet‐laboratory expertise and bioinformatics training required to conduct genome‐scale variant discovery remain limiting factors for investigators with limited resources.

    Here we present ISSRseq, a PCR‐based method for reduced representation of genomic variation using simple sequence repeats as priming sites to sequence inter simple sequence repeat (ISSR) regions. Briefly, ISSR regions are amplified with single primers, pooled, used to construct sequencing libraries with a commercially available kit, and sequenced on the Illumina platform. We also present a flexible bioinformatic pipeline that assembles ISSR loci, calls and hard filters variants, outputs data matrices in common formats, and conducts population analyses using R.

    Using three angiosperm species as case studies, we demonstrate that ISSRseq is highly repeatable, necessitates only simple wet‐laboratory skills and commonplace instrumentation, is flexible in terms of the number of single primers used, and can generate genomic‐scale variant discovery on par with existing RRS methods which require more complex wet‐laboratory procedures.

    ISSRseq represents a straightforward approach to SNP genotyping in any organism, and we predict that this method will be particularly useful for those studying population genomics and phylogeography of non‐model organisms. Furthermore, the ease of ISSRseq relative to other RRS methods should prove useful to those lacking advanced expertise in wet‐laboratory methods or bioinformatics.

     
    more » « less